E-320 Progress and Plans for FY24

2023 FACET-II User Meeting

David Reis

Sebastian Meuren

October 18, 2023

The collaboration

Carleton University, Ottawa, Ontario, Canada	Thomas Koffas	
Aarhus University, Aarhus, Denmark	Christian Nielsen, Allan Sørensen, Ulrik Uggerhøj	
École Polytechnique, Paris, France	Sébastien Corde, Pablo San Miguel Clave, Mickael Grech, Aimé Matheron, Sebastian Meuren (PI), Caterina Riconda	
Technical University (TU) of Darmstadt	Stephan Kuschel, Christian Rödel	
MPI für Kernphysik, Heidelberg, Germany	Antonino Di Piazza, Christoph H. Keitel, Matteo Tamburini	
HI Jena and University of Jena, Germany	Harsh, Felipe Salgado, Jannes Wulff, Matt Zepf	
Universidade de Lisboa, Portugal	Thomas Grismayer, Luis Silva, Marija Vranic	
Imperial College London, UK	Stuart Mangles	
Queen's University Belfast, UK	Niall Cavanagh, Elias Gerstmayr, Gianluca Sarri, Matthew Streeter	
California Polytechnic State University, CA USA	Robert Holtzapple & students	
Lawrence Livermore National Laboratory, CA USA	Félicie Albert	
SLAC National Accelerator Laboratory and Stanford PULSE Institute, Menlo Park, CA USA	Robert Ariniello, Phil Bucksbaum, Christine Clarke, Angelo Dragone, Alan Fisher, Frederico Fiuza, Alan Fry, Spencer Gessner, Siegfried Glenzer, Carsten Hast, Mark Hogan, Chris Kenney, Alexander Knetsch (POC), Doug McCormick, Rafi Mir-Ali Hessami, Brendan O'Shea, David Reis, Tania Smorodnikova, Douglas Storey, Glen White, Vitaly Yakimenko	
University of California Los Angeles, CA USA	Chan Joshi, Warren Mori, Brian Naranjo, James Rosenzweig, Oliver Will	iams, Monika Yadav
University of Colorado Boulder, CO USA	Chris Doss, Michael Litos	
University of Nebraska - Lincoln, NE USA	Matthias Fuchs, Junzhi Wang	
Former members	Zhijiang Chen, Henrik Ekerfelt, Erik Isele	
Stanford. PULSE Institute	E-320 Progress and Plans for FY24	Reis/Meuren 2

High-level summary: fundamental SFQED processes we will study

High-level summary: first collisions, and some competition

- We observed electron-laser collisions during two beam times in 2022
- . 6 days ago (October 12/13, 2023) we re-established collisions

Electron spectrum (2022): net absorption of 1&more laser photons

Presentation 20 July 2023

Demonstration of all optical nonlinear Compton scattering between a multi-GeV electron beam and an ultrahigh intensity laser Chang Hee Nam

Multi-PW laser facilities have first result

It is timely to harvest low-hanging fruits

E-320 Progress and Plans for FY24

Scattered electron data (2022): laser wire-type beam diagnostic

right: laser timing scan: Compton scattered gammas and position/momentum correlation of scattered e-beam San Miguel Claveria

http://arxiv.org/abs/2310.05535

left: Laser intensity scan Scattered electrons position/momentum with lowintensity image is subtracted as "background" and gammas desired: "goose" trigger

Estimation of the (peak) laser intensity (2022 beamtimes)

New data taken last week

Laser quality improved significantly

Phase-front /collimation improved

Grating motorization remove spatial chirp

E-320 focal scan: removed astigmatism

See talk by A. Knetsch: S20 laser and diagnostic probe lines

Great progress due to work by Junzhi / Alex / Robert et al.

See talk by R. Ariniello: S20 Laser High power performance and possible upgrades

E-320 Progress and Plans for FY24

Timing measurement: YAG tool very reliable

- e-beam arrives early: carriers excited
 → laser transmission is reduced
- . rise time: \lesssim 1ps, carrier lifetime: \gtrsim 1 ns

Inspired by LCLS to finder: Sato et al., J. Syn. Rad. 26, 647 (2019)

E-320 Progress and Plans for FY24

Reis/Meuren 9

Timing: E-320 vs. plasma experiments

Timing difference (theory)

(42.0mm + 70.73mm + 81.67mm) / (speed of light) ≈ 648.45 ps

Gas jet t₀: 1256.7187 ns (previously: 1256.498 ns) **E-320 t₀:** 1256.0676 ns (Δ≈651.1 ps)

Knetsch/Wang et al.

The 2x150 mm Master/EOS delay stage should be sufficient to have both the plasma experiments and E-320 compatible with EOS

E-320 Progress and Plans for FY24

Electron-spectrometer calibration

- Calibration depends on quad settings: BBA desirable!
- . Dipole steers also horizontally: Improvable?

Preliminary

from dataset 3876 (Oct 13, 2023)

Hessami/Smorodnikova

E-320 Progress and Plans for FY24

Electron-spectrometer calibration

Calibration dependence on quads

e-spec	7 GeV	8 GeV	9 GeV
Offset [px]	1615.9	1621.7	1629.7
Slope	-670.9	-672.2	-673.9

Electron energy [GeV] = slope x dipole setting [GeV] / (pixel position - offset)

- Calibration depends on quad settings: BBA desirable!
- Dipole steers also horizontally: Improvable?

Hessami/Smorodnikova

from datasets 3875/3876/3877 (Oct 13, 2023)

E-320 Progress and Plans for FY24

Electron-laser scattering data: analysis

Linear Compton Scattering (LCS)

Linear-Compton edge: 8.22 ± 0.08 GeV

- extracted from cosh-fit
- error: e-spec calibration Hessami/Smorodnikova

- Total LCS signal follows intensity scaling
- However: total change (factor 6.9) too low

E-320 Progress and Plans for FY24

Preliminary

from dataset 3905 (Oct 13, 2023)

Non-Linear Compton Scattering (NLCS): inconclusive

- We see "signal" at energies below the 1st Compton edge (8.2 GeV)
- · However: this signal doesn't scale with intensity, cannot be NLCS
- . Need to improve signal to noise (and laser intensity)

Hessami/Smorodnikova

Stanford. PULSE Institute

E-320 Progress and Plans for FY24

Preliminary

from dataset 3905 (Oct 13, 2023)

E-320: objectives

Near-term goal

Transition from perturbative to non-perturbative regime

Needs to facilitate this measurement

- . Remove glass window after compressor (clean transmission)
- . $\ \ \rightarrow$ requires RGA readings and maybe plasma cleaning
- . "Goose trigger" for pseudo-randomized laser on/off shots \rightarrow crucial to subtract beam-based background
- Electron detector with much higher SNR (Orca, ePix, etc.)

E-320 Progress and Plans for FY24

Beam diameter	40 mm
f#	~2
wavelength	0.8 µm
Spot size (FWHM)	2-3 µm
Pulse duration	~60 fs (→40fs?)
Gold OAP Strehl	~0.5
MPA output	0.6 J (→0.8 J?)
Transport/Comp. efficiency	37.5 %
Energy in PB	0.23-0.30 J
Intensity	2.5x10 ¹⁹ W/cm ² - 5x10 ¹⁹ W/cm ²
a0	3-5

Goal: ePix installation at the dump table

shielding to keep ePix safe during "high radiation times"

currently installed: radiation sensor

ePix module provided by the SLAC detector group

Main contributors: Aimé Matheron, Sébastien Corde, Robert Holtzapple, Adam Callman, Doug Storey, Chris Kenney

Stanford. PULSE Institute

E-320 Progress and Plans for FY24

Goal: test DESY/LUXE straw Cherenkov detector

DESY team: A. Athanassiadis, L. Helary, R. Jacobs, J. List, E. Ranken, S. Schmitt

LUXE TDR:https://arxiv.org/pdf/2308.00515.pdfEPS talk:https://indico.desy.de/event/34916/

Reconstruction algorithm (LUXE simulation)

Proposal: start with proof-of-principle installation at FACET (~4 straws), full installation possible later

Benefits for E-320: radiation hardness of ePix not clear; this design is likely more robust / cheaper

E-320 Progress and Plans for FY24

counts

Goal: shot-to-shot timing (and position) information via EOS

EOS-BPM installed in the picnic basket

Getting shot-to-shot timing and position information allows us to sort data based on collision quality. important for collecting high-quality E-320 data

Relative timing jitter: ≈ 50 fs

EOS timing resolution: 18.26 ± 0.38 fs/px

Hunt-Stone et al., NIMPRA 999, 165210 (2021)

see talk by: C. Hansel, A. Knetsch, V. Lee, M. Litos (this meeting) and EOS analysis: S. Gessner, C. Emma, C. Doss, C. Hansel, H. Ekerfelt, A. Scheinker (Oct. 5, 2022)

E-320 Progress and Plans for FY24

Goal: shot-to-shot high-intensity diagnostic

E-320 Progress and Plans for FY24

Mid-term goal

Needs to facilitate this measurement

- Clean transmission of the electron beam to the dump \rightarrow requires pencil beam with large beta function
- Highest possible laser intensities
 → improvements on all parameters to reach a₀ > 7
- Single-positron detection with good background rejection
 → required silicon-based tracker and calorimeter upgrade

E-320 Progress and Plans for FY24

Beam diameter	40 mm
f#	~2
wavelength	0.8 µm
Spot size (FWHM)	2-3 µm
Pulse duration	~40 fs
Dielectric OAP Strehl	~0.8
Transport/Comp. efficiency	40 %
Energy in PB	0.40 J
Intensity	1x10 ²⁰ W/cm ²
a0	6.8

Mid-term goal: upgrade positron detector

<u>Current tracking</u>: two LYSO screens (sensitivity not sufficient for single positrons) desired change: silicon-based tracker

<u>Current Cherenkov radiator</u>: is degrading too much desired change: use radiation-hard material, e.g., lead fluoride

Anderson et al., NIMPRS A290, 385 (1990)

E-320 Progress and Plans for FY24

Mid-term goal: test LUXE positron tracker/detector

Electron/positron tracker for LUXE@DESY

LUXE TDR: https://arxiv.org/pdf/2308.00515.pdf

- Thin monolithic active pixel sensors (MAPS), dubbed "ALPIDEs" (ALice PIxel Detector)
- Produced by TowerJazz for the upgrade of the ALICE experiment at the LHC
- Radiation hardness: technology was selected for HL-LHC heavy ion collisions

Noam's group (Weizmann institute) would like to test/provide their tracker for E-320

E-320 Progress and Plans for FY24

Mid-term goal: upgrade gamma diagnostics

Mid-term goal: install gamma-ray profiler with higher resolution

Sapphire-strip detector

2x2cm² field of view, 5-10 μm resolution, High radiation resistance (Sapphire)

INFN, U. Bologna, & U. Padova: P. Grutta, M. Bruschi, M. Morandin, F. Lasagni, S. Vasiukov, U. Dossell QUB: K. Fleck, N. Cavanagh, E. Gerstmayr, M. Streeter

E-320 Progress and Plans for FY24

Reis/Meuren 26

The gamma-profile ellipticity is related to a_0 in the interaction region

High-order multiphoton Thomson scattering Yan et al., Nature Photon. 11, 514 (2017)

Har-Shemesh & Di Piazza Opt. Lett. 37, 1352–1354 (2012)

Summary and timeline

Long-term goals:

- 100-500 TW laser upgrade for FACET-II
- 2nd IP: light-by-light scattering experiments, (pair production & vacuum birefringence)
- Polarization-sensitive detectors: vacuum birefringence, radiative spin polarization
- Observe signatures of high-energy electron-positron coherent recollisions, waveform synthesis

• ...

E-320 Progress and Plans for FY24