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Positron PWFA in Homogenous Plasma

2001

First evidence for 
positron focusing

2003

First broadband 
ac(de-)celeration 

2015 2017
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2D PIC Simulation:
No plasma
Pre-formed plasma

First multi-GeV 
energy gain 

First acceleration 
of a distinct bunch 4

*The years refer to year of publication



Positron PWFA in a Hollow Channel

2003

First positron guiding in 
a near-hollow channel

2016

First acceleration in a 
true hollow channel

2018 2023

First wakefield
measurements

First demo of efficient 
energy transfer 5
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Collider Requirements
Ultimate objective: plasma-based e-e+ linear collider

Two figure-of-merit parameters for linear colliders: 
ØAcceleration gradient
Ø Luminosity per wall-plug power

o Small beam size (low emittance and small energy spread)
o High charge
o High efficiency
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What’s missing: beam quality

In homogeneous plasma: emittance 
Ο(100𝜇𝑚) and likely not preserved.

In hollow channel: beam break-
up instability.

New proposals try to address these issues. 9
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Proposed Schemes Comparison
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From luminosity per power to 
dimensionless luminosity per power

ℒ! ≈
1

8𝜋𝑚"𝑐#
1
𝛽$𝛽%

𝜂&'(()*'+,𝑁
𝜖,$𝜖,%
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Gradient at a given 
plasma density

2ℒ! is independent of plasma density
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Ideal working point



Outer: uncorrelated (slice) energy spread
Inner: total (projected) energy spread 
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Ideal working pointIdeal working point



e- PWFA and CLIC are at least 2.5 orders of 
magnitude higher in 2ℒ! than all e+ schemes 

WHY?
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Best-performing e+ schemes are more or less at 
the same level in 8ℒ𝒑

WHY?
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e- driven nonlinear 
blowout, optimally loaded Finite-radius plasma 

channel

Donut-shaped e- or 
laser driver

Asymmetric hollow 
channel
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Why is there an ion/electron motion limit 
and what do they mean?
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Ion phase advance by Rosenzweig:

Δ𝜙+ ≈ 𝑘+Δ𝜁 =
:!""

#
;<#=
*$

0%>,!
?&'?&(

≲
𝝅
𝟐Main bunch
20

High ion phase advance degrades beam quality
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From ion motion to electron motion: it’s the same challenge!

Note: 𝑚"-~70000𝑚%

4.5 orders of 
magnitude!

There’s a relation between 𝚫𝝓 and 2ℒ𝒑!
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From phase advance to dimensionless luminosity per power
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Some schemes go beyond the limit
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7.6 
Nonlinear ~4

Donut Driver #2
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5 × .
/
 limit 4 ×1 assumption

*overloaded, 6% 
energy spread



We can go beyond the limit in several ways
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Tolerate higher phase 
advance: 

Maintain a uniform 
plasma e- 
distribution/slice by 
slice matching 

Extract more energy with 
shorter bunch lengths

Use relativistic 
plasma e-

Use and maintain 
weak focusing:

Plasma temperature
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Some parameters may work against each other
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Using relativistic plasma e- makes 
it more difficult to capture them 
for focusing

Plasma e- oscillate less in 
shorter bunches 
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The finite-radius plasma channel is not limited 
by electron motion
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Essentially no oscillations, but 
effectively tolerating very high 
phase advance: ~34

Weakness of the 
scheme, <0.1

1. Use of initial plasma e- transverse momentum 
and small beams (small emittance)—making 
capture harder, no oscillations

2. Does not rely on plasma e- oscillations 
for focusing 

Unique features of the scheme: 
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Ø Good for quality preservation



Conclusion
Ø Two sets of e+ PWFA experiment were performed at SLAC over the past 2 decades: in 

homogeneous plasma and hollow channels.

Ø Proposed schemes aim to address the beam quality issues observed in these experiments. 

Ø Scheme comparison show similar performance for many schemes and ~3 orders of 

magnitude lower in luminosity per power for plasma-accelerated e+ compared to e-.

Ø The ultimate challenge is electron motion within the e+ bunch—the same principle as ion 

motion!

Ø Several strategies exist to go beyond the electron-motion limit or even get around the 

problem! 
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Miracle à Strategy



More details in the review paper 
(submitted to PRAB) 
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Questions?


