

Positron Acceleration in Gevy J. C. Plasma Wakefields

Gevy J. Cao, Carl A. Lindstrøm Erik Adli, Sébastien Corde, Spencer Gessner

Current efforts, the root challenge, and future directions

FACET-II user meeting, Oct 19, 2023

- A brief history
- Collider requirements
- ➤ What is missing?
- Scheme comparison
- Electron-motion limit
- Going beyond the limit

A brief history

Collider requirements

> What is missing?

Scheme comparison

Electron-motion limit

Positron PWFA in Homogenous Plasma

Positron PWFA in a Hollow Channel

> A brief history

Collider requirements

➤ What is missing?

Scheme comparison

Electron-motion limit

Collider Requirements

Ultimate objective: plasma-based e-e+ linear collider

Two figure-of-merit parameters for linear colliders: ➤ Acceleration gradient

Luminosity per wall-plug power
Small beam size (low emittance and small energy spread)
High charge
High efficiency

 $\frac{\sim}{P_{wall}} \equiv \mathcal{L}_p \approx$

> A brief history

Collider requirements

> What is missing?

Scheme comparison

Electron-motion limit

What's missing: beam quality

for bunch separation 210 \pm 10 μ m 600 ∆x' (µrad) 400 Experimental measurement (423 shots) Slope fit (0.86 MV pC⁻¹ m⁻¹ mm⁻¹) Uncertainty (±0.13 MV pC⁻¹ m⁻¹ mm⁻¹) -600 -40 -30 -20 40 -10 0 10 20 30 Channel offset weighted by drive bunch charge, $\Delta x Q_{DR}$ (mm pC)

Angular deflection vs. charge weighted channel offset

In homogeneous plasma: emittance $O(100\mu m)$ and likely not preserved.

In hollow channel: beam breakup instability.

New proposals try to address these issues.

> A brief history

Collider requirements

➤ What is missing?

Scheme comparison

Electron-motion limit

Proposed Schemes Comparison

From luminosity per power to dimensionless luminosity per power

$\tilde{\mathcal{L}}_{p}$ is independent of plasma density

Ideal working point

Ideal working point

A brief history

Collider requirements

➤ What is missing?

Scheme comparison

Electron-motion limit

Why is there an ion/electron motion limit and what do they mean?

High ion phase advance degrades beam quality

From ion motion to electron motion: it's the same challenge!

Note: $m_{ar} \sim 70000 m_e$

There's a relation between $\Delta \phi$ and $\tilde{\mathcal{L}}_p$!

From phase advance to dimensionless luminosity per power

> A brief history

Collider requirements

➤ What is missing?

Scheme comparison

Electron-motion limit

Some schemes go beyond the limit

We can go beyond the limit in several ways

Some parameters may work against each other

The finite-radius plasma channel is not limited by electron motion

Essentially no oscillations, but effectively tolerating very high phase advance: ~34

 $\tilde{\mathcal{L}}_{p}^{e^{+}} = \int \frac{16\pi}{\gamma} (\Delta \phi_{e})^{2} \left(\frac{\eta_{extr}}{k_{p}\sigma_{z}}\right) \gamma_{pe} \sqrt{\frac{n_{0}}{\Delta n}}$

Weakness of the scheme, <0.1

 $k_p X_0 \quad n_p/n_0$

27

Unique features of the scheme:

1. Use of initial plasma e- transverse momentum and small beams (small emittance)–making capture harder, no oscillations

Good for quality preservation

2. Does not rely on plasma e- oscillations for focusing

Conclusion

- Two sets of e+ PWFA experiment were performed at SLAC over the past 2 decades: in homogeneous plasma and hollow channels.
- Proposed schemes aim to address the beam quality issues observed in these experiments.
- Scheme comparison show similar performance for many schemes and ~3 orders of magnitude lower in luminosity per power for plasma-accelerated e+ compared to e-.
- The ultimate challenge is electron motion within the e+ bunch-the same principle as ion motion!
- Several strategies exist to go beyond the electron-motion limit or even get around the problem!

More details in the review paper (submitted to PRAB)

$\exists \mathbf{r} \mathbf{v} > \mathsf{physics} > \mathsf{arXiv:} 2309.10495$

Physics > Accelerator Physics

[Submitted on 19 Sep 2023 (v1), last revised 6 Oct 2023 (this version, v2)]

Positron Acceleration in Plasma Wakefields

G.J.Cao, C.A.Lindstrøm, E.Adli, S.Corde, S.Gessner

Plasma acceleration has emerged as a promising technology for future particle accelerators, particularly linear colliders. Significant progress has been made in recent decades toward high-efficiency and high-quality acceleration of electrons in plasmas. However, this progress does not generalize to acceleration of positrons, as plasmas are inherently charge asymmetric. Here, we present a comprehensive review of historical and current efforts to accelerate positrons using plasma wakefields. Proposed schemes that aim to increase the energy efficiency and beam quality are summarised and quantitatively compared. A dimensionless metric that scales with the luminosity-per-beam power is introduced, indicating that positron-acceleration schemes are currently below the ultimate requirement for colliders. The primary issue is electron motion; the high mobility of plasma electrons compared to plasma ions, which leads to non-uniform accelerating and focusing fields that degrade the beam quality of the positron bunch, particularly for high efficiency acceleration. Finally, we discuss possible mitigation strategies and directions for future research.

Questions

Search... Help | Adva