

E-336 Progress and Plans for FY24

Feasibility studies of the FACET-II beam interaction with nanotube materials

Max F. Gilljohann on behalf of the E336 collaboration

Principal Investigators: Sébastien Corde and Toshiki Tajima

loa.ensta-paris.fr

ERC & ANR (UnRIP project, Grant No. ANR-20-CE30-0030).

00

OA

E336 – Beam-Nanotarget Interaction

Scientific goals

- Proof-of-principle experiment demonstrate feasibility of studying beamnanotarget interaction and beam-induced wakefields in nanotargets.
- Observation of electron beam nano-modulation.
- Observation of betatron X-ray radiation.
- · Confirmation of simulation models.

Definition of success

- Clearly distinguishable interaction with nanotarget and amorphous targets. (1.5 year)
- Systematic parametric studies with various target and beam parameters.
- Coherence with numerical and analytical models to support the interpretation and (3 year) understanding of the interaction (beam nano-modulation etc.).

Current state

- Experimental safety review carried out.
- "Nanotargets" installed and beam damage tested.
- Alignment control installed, alignment diagnostic almost ready.

Next steps

Phase 1 – FY24-25	 Relative angular alignment diagnostic (on-line). Absolute angular alignment diagnostic (invasive). First signature of beam-nanotarget interaction.
Phase 2 – FY25-26	 Improve/upgrade experimental hardware and targets. Advanced characterization of beam-nanotarget interaction with full set of sample and FACET-II beam parameters.
Phase 3 (conditional)	 Going from transverse wakefields and beam dynamics to longitudinal wakefields.

Target mount with 1 μ rad tip/tilt resolution

E336 – Relative Alignment Diagnostic

Main observables

- Growth of transverse momentum spread
- Beam deflection (for tilted targets)
- X-rays and γ -rays

Beam Diagnostics

- Electrons
 - High-resolution in-vacuum OTR at the dump table (DTOTR)
- Gammas
 - γ screens at the dump table and Gamma Detection Chamber (UCLA)

Mounting of angular control for nanotarget

Target assembly before modification

Kinematic mount with E336 samples added to bottom solid target mount

- Modified E305 target mount in the least invasive way to other experiments.
- Angular control using tip/tilt kinematic mount with pico motors.
- This fulfils E336 requirements (according to PAC).
 - Angle: $< 20 \ \mu rad$ presicion and $\sim 2 \ deg$ range
 - Translation: $10 \ \mu m$ to $100 \ \mu m$ precision and $5 \ cm$ range
- Design of angular diagnostic (almost ready for integration).

Beam-induced target damage tests

- Sample installed: 1 mm thickness lead glass with $6 \mu m$ diameter hollow tubes.
- 2 hours of E336 beamtime on 08/01/22 to send beam into nanotargets and assess the damage.
- Irradiated two positions, then re-optimized L2 phase for best drilling/compression (Al 0.1 mm drilled in 3 min at 10 Hz), and then tested again Al 1 mm and nanotarget in optimized conditions.
- Although damage is observed, nanotarget is fairly resistant.
 - Nanotarget: 15% decrease in 15 min @ 10 Hz
 - Al 1 mm: 50% decrease in 15 min @ 10 Hz (decrease in radiation)

2D PIC simulation campaign – Modelling beam ionization of non-conducting material

Silica with $\phi = 200 \text{ nm}$ hollow tubes and $\sigma_r = \sigma_{\parallel} = 5 \mu \text{m}$ bunch size.

- Beam self-fields are strong enough to ionize.
- Partially ionized plasma can screen beam self-fields and suppress further ionization.
- Ionization is strong enough to enable the nanotube-plasma-response that is responsible for the transverse beam-dynamics and nano-modulation.
- Nano-modulation is similar in the case of fully pre-ionized target.

2D PIC simulation campaign – Beam-surface interaction

- Electric fields of beam electrons are shielded by the surface plasma.
- Magnetic fields penetrate further into the solid than electric fields.
- Beam electrons in this gap are accelerated towards the tube center.

- Beam is deflected when the nanotarget is tilted.
 - Powerful mean to fine-tune the alignment.
 - Straightforward signature of the beam-nanotarget interaction.
- With $\phi = 2 \mu m$ tubes ($\phi = 6 \mu m$ installed), maximum deflection of 0.75 mrad is reached for a tilt of 1.5 mrad.

Carbon nanotube targets

- Gianluca Cavoto and Ilaria Rago (INFN) joined collaboration.
- Up to 100's of micrometer length possible.
- Currently working out sets of parameters that are technically achievable and suitable for E336.

Example from nano-lab.com

Plans for E336 experimental setup

- Comissioning of angular target alignment and relative on-line diagnostic.
- Invasive diagnostic for absolute angular alignment; uses greene (that is aligned to beam axis) to tune the retro-reflection from the nanotarget.
- Both diagnostics were reviewed in the E336 experimental safety review.

Plans for E336 shifts

- Full 2D angular scan of the nanotarget, looking for beam kicks.
- Characterize beam-nanotarget interaction once angular alignment is achieved. Compare to amorphous material.

Desired facility upgrades

- E336 benefits from highest bunch density and smallest emittances.
 - Charge per tube scales with Q/σ_r^2 (areal charge density), and the scale fo the transverse force acting on beam particles goes as $n_b d$ (with the nanotube diameter d).
 - The emittance acts against beam transverse modulation, with an effective force in the envelope equation going as ϵ_n^2/d^3 which must be small compared to the force from the nanotube plasma response

Example: for $d = 0.3 \ \mu\text{m}$ and $10 \ \mu\text{m}$ beam size, $50 \ \text{kA}$ and $5 \ \text{mm}$ mrad works, $20 \ \text{kA}$ and $20 \ \text{mm}$ mrad doesn't.

E336 – Collaboration and Publications

Collaboration and institutions

- IP Paris/LOA: Sébastien Corde, Max Gilljohann and Yuliia Mankovska
- UC Irvine: Peter Taborek and Toshiki Tajima
- Fermilab: Henryk Piekarz and Vladimir Shiltsev
- SLAC: Robert Ariniello, Mark Hogan, Alexander Knetsch and Doug Storey
- CEA: Xavier Davoine and Laurent Gremillet
- IST: Bertrand Martinez and Pablo San Miguel Claveria
- INFN: Laura Bandiera, Gianluca Cavoto, Ilaria Rago and Alexei Sytov

Publications and conferences

- White paper for Snowmass in AF6 Advanced Accelerator Concepts (arXiv:2203.07459)
- JINST Snowmass paper (close to publication)
- Simulation paper about transverse microbunching in preparation (MG and BM)
- Posters @ EAAC2023 (MG), LPAW 23 (MG), IPAC 2023 (AS), ICABU 2023 (AS, upcoming)
- Talks @ AAC'22 (AK and RA, each), Channeling 2023 (AS)

Goal: Studying beam-nanotarget interaction

State: Target is installed, alignment diagnostic almost ready for installation

First tests: Beam-induced target damage

Simulation campaign: Explaining the physics & extracting experimental signatures

FY24 plans: Measuring signatures of beam-nanotarget interaction, commission angular alignment & diagnostic, and working on new targets

Supplementary

