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E331 Science Motivation



moreassumed knowledge of machine

Model-Free 
Optimization

Observe performance change after 
setting adjustments

 à estimate direction or apply 
heuristics toward improvement

Model-guided 
Optimization

Update a model at each step

 à use model to help select the next 
point

Global Modeling + 
Feed-forward Corrections

Make fast system model
 

à provide initial guess (i.e. warm 
start) for settings or fast 

compensation

gradient descent
simplex

ES

Bayesian optimization
reinforcement learning

ML system models +
inverse models

 

Model-based warm start

Tuning approaches leverage different amounts of data / previous knowledge
 à suitable under different circumstances

 
 

J. Kirschner

less

Tuning research aimed at combining the strengths of different approaches.
General strategy: start with sample-efficient methods that do well on new systems, then build up to more data-intensive and heavily model-

informed approaches. 



Sextupole tuning for IP at FACET-II

Longitudinal phase 
space tuning on LCLS

Hanuka et. al. PRAB , 2021

Higher-precision optimization possible 
when including hysteresis effects in model

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 

hysteresis

Duris et. al. PRL , 2020

Roussel et. al. PRL , 2022
Roussel et. al. PRAB , 2021

FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3

Multi-objective 
Bayesian Optimization

target

Many successes 
with Bayesian 
Optimization

 (+ improvements)

Algorithms being implemented/distributed in Xopt: https://github.com/ChristopherMayes/Xopt 

https://github.com/ChristopherMayes/Xopt


Fast-Executing,  Accurate System Models
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< ms execution speed

106 times speedup

Bringing 
simulation tools 

from HPC systems 
to online/local 

compute

Online prediction
Model-based control

Control prototyping
Experiment planning

ML models are able to provide fast approximations to simulations
 (“surrogate models”)

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity 
online prediction, tracking of machine behavior, and model-based control

Edelen et al., NeurIPS 2019

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Smooth interpolation 
Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-
boosted design 

optimization 

Warm starts for 
optimization

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

A. Edelen
 et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 
Hidden Layers

… N - 2 …

Scalar outputs
VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 
MLST, 2021

A. Edelen et al., NeurIPS 2019

Relative uncertainty estimates indicate 
when to retrain



Hand-tuning in seconds vs. tens of minutes
 

Boost in convergence speed for other algorithms

Can work even under distribution shift

• Round-to-flat beam transforms are challenging to optimize 
à 2019 study explored ability of a learned model to help

• Trained neural network  model to predict fits to beam image, 
based on archived data

• Tested online multi-objective optimization over model (3 
quad settings) given present readings of other inputs

• Used as warm start for other optimizers

• Trained DDPG Reinforcement Learning agent and tested on 
machine under different conditions than training

Example: Warm Starts from Online Models





E331 Science/Technical Goals

9

Science/Technical Goal Target Time Definition of Success
Evaluate methods for high-dimensional, high-quality 
control over beams using learned responses, starting 
with small-scale problems +  single-bunch mode

1-3 years Automated tuning of transverse emittance and longitudinal 
phase space: faster, higher-quality tuning than standard 
methods, new capabilities in control

High-quality control over extreme beams and plasma 
experiments, two-bunch mode

3 years Same as above but for more challenging setups/target 
beams

Deliver algorithms and interfaces for regular operation continual Tools incorporated into regular use + transitioned to 
operations

Main goal: develop and demonstrate 
methods to leverage global learned system 
responses to aid fast, high-quality tuning 

of beams under challenging conditions and 
aid switching between setups

(build up incrementally to machine-wide 
neural network-based reinforcement 

learning)

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

Staged approach gradually increases complexity, goes from sample-efficient methods that learn on-the-fly to comprehensive model-based methods that 
use variety of machine data à success determined by improvements in tuning quality and speed, and transition into operations



E331 Diagnostic and Observables
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• LPS diagnostics (e.g. injector + downstream TCAVs)

• Emittance measurements, x-y beam sizes from wires, transverse phase space from screens

• Upstream inputs: virtual cathode camera, QE map once available, laser diagnostics

• Readbacks from settings (gun solenoid, gun and linac phases/amplitudes etc)

• DAQ: ~150 scalar diagnostics (e.g. BPMs, toroids, RF readbacks, BLEN pyros) and multiple image diagnostics (SYAG, EOS, TCAV)

à Flexibility in E331 enables adaptation to installation / commissioning schedule for different diagnostics

Numerous diagnostics to inform tuning or be used as tuning targets

= TCAVs
= Edge radiation cameras
= SYAG

= bunch length pyros

Similar 
diagnostic 

needs to E327



FY22-FY23 Progress - shift timeline

11First shifts demonstrated utility of ML optimization tools à data gathered will be used in next phases of project

• Shared beam time with E327
• Deployed initial software tools for measurements and optimization
 

• Characterized injector under different charge settings and laser parameters
• Tested new ML algorithms for efficient characterization and tuning (applied to injector emittance and IP spot size tuning) 

 

• Next steps: continue scaling up + use data gathered to move toward more comprehensive model-based approaches; 
incorporate TCAVs in tuning

TCAV

TCAV



E331 Progress: Practicalities and Infrastructure
• Vetted adaptive emittance measurement method 

for use in automated emittance optimization 
(PyEmittance) 
https://github.com/slaclab/PyEmittance
- Need to re-evaluate in new machine config, extend 

to downstream emittance measurements

• Integrated Xopt into FACET-II control systemà aids 
algorithm transfer between systems and will make it 
easy to test new algorithms on FACET-II

• Deployed online LUME-IMPACT model of injector 
(live reading from machine and making predictions) 
-  Particle-in-cell code includes space charge, uses 

VCC image
- Same infrastructure for deploying online ML 

models we plan to use in model-based tuning

• Next steps: Badger user interface for optimization 
(also saves tuning runs à useful data for developing 
model-based algorithms)

FACET-II Injector model 
running online using 

LUME-IMPACT

Xopt running on FACET-II for easy ML algorithm 
deployment on different tuning problems

https://www.lume.science/ 

Adaptive quad scan emittance 
measurement deployed for robust 

measurements

0.04 to 0.14 mJ in SXR à 15% better than hand-tuning

Badger GUI: useful for online optimization 
AND archiving of useful data

Variety of tools for online modeling and optimization. Optimization software useful for algorithm testing, deployment into ops, and 
collection of useful data for more comprehensive model training. 

https://github.com/slaclab/PyEmittance
https://www.lume.science/


E331 Progress: ML for Efficient Characterization 
Better Data Sampling:
Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 
characterization of high-dimensional 
spaces, while respecting both input 

and output constraints

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints



E331 Progress: ML for Efficient Characterization 

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan
  

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match. 

• Example of integrated cycle between characterization, modeling, and 
optimization à now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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d
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d transverse phase space

Automatic Exploration
(constrained to useful values 

of emittance and match)

ML Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector and matching quads)

x-y emit, 
match, 
and 
beam 
images

FACET-II Injector



E331 Progress: Bayesian Optimization and Characterization of Injector

emit x bmag yemit y bmag x

1.8 nC

• Demonstrations of Bayesian optimization on the injector with up to 10 variables 
• Extensive data obtained from characterization studies at 2nC and 700pC
• ML models from data give insight into machine behavior à still exploring this extensively

Solenoid [kG]

Bu
ck

in
g 

Co
il ML model predictions 

and new sample 
locations 

(learning to balance 
tradeoffs between 

outputs)



E331 Progress: Bayesian Optimization and Characterization of Injector

emit x bmag yemit y bmag x

1.8 nC

• Demonstrations of Bayesian optimization on the injector with up to 10 variables 
• Extensive data obtained from characterization studies at 2nC and 700pC
• ML models from data give insight into machine behavior à still exploring this extensively

Solenoid [kG]

Bu
ck

in
g 

Co
il ML model predictions 

and new sample 
locations 

(learning to balance 
tradeoffs between 

outputs)

Working on using measured data gathered from these experiments to 
make comprehensive injector model and do model calibration to find 

sources of error and better match machine

(example from LCLS injector)



E331 Progress: 
Efficient Emittance Optimization with Partial Measurements
• Instead of tuning on costly emittance measurements directly, learn a fast-executing model online for beam size while optimizing 
• Demonstrated new algorithmic paradigm leveraging ”Bayesian Algorithm Execution” (BAX) for 20x speedup in tuningà learn on direct observables (e.g. 

beam size); do inferred “measurements” (e.g. emittance) much more quickly on the model than would be possible on the machine

simulation

experiment

New method demonstrated at FACET-II has 20x speed improvement over standard emittance optimization method. Paradigm shift in 
how tuning on indirectly computed beam measurements (such as emittance) is done.

model is learned
 on-the-fly

Convergence of beam size prediction error 
gives practical indicator of optimization 

convergence (no need to do direct emittance 
measurement until the end)

Found equivalent quality to hand-
tuning in about 70 iterations (just a few 
minutes with computationally optimized 

routine)

https://arxiv.org/abs/2209.04587 

https://arxiv.org/abs/2209.04587


• Ran constrained Bayesian optimization on the 
sextupole movers (8 variables total) to minimize spot 
size as measured on the wires in S20

• Recorded auxiliary data (TCAV and EOS, BSA)

• First step toward more comprehensive tuning in S20

• Used software, Xopt, established for previous runs 
with little need for adjustment to this specific 
problem à nice demonstration of extensibility

E331 Progress: Optimization of Sextupoles for Spot Size at IP

Automatically tuned for a small, round beam at the IP using sextupole movers. Ready for next steps in tuning both IPs and with 
broader set of variables.

Next:
• Want to use on both IPs (with multi-objective optimization) and use greater number of variables
• Use data to inform faster subsequent optimization



Next Steps: NN Prior
Combining neural networks with BO à important for scaling BO up to higher-dimensional tuning problems 

Model 2

Gr
ou

nd
 T

ru
thEven prior mean models with 

substantial inaccuracies 
provide a boost in initial 

convergence 
à now testing on machine 

and refining approach 

Good first step from previous work: use neural network 
system model to provide a prior mean for a GP

Used LCLS injector surrogate model for prototyping
variables: solenoid, 2 corrector quads, 6 matching quads
objective: minimize emittance and matching parameter

NeurIPS proceeding: https://arxiv.org/abs/2211.09028

regular Bayesian
 optimization

prior mean from 
models with different fidelity

• Want to apply this to with sextupole tuning,  injector and linac tuning, etc at FACET-II à would potentially help 
significantly with high-dimensional tuning

• Should work well in cases where machine response drifts but qualitative response is similar



Next Steps: LPS Tuning

Demonstrated Bayesian optimization for LPS tuning 
on LCLS for several variants of problem setup:
• 2 peak current settings,  6 phases and amplitudes 
• Target phase space, minimize energy spread and 

bunch length

à Want to test on FACET-II as first step toward 
more comprehensive neural network based 
control for LPS

à Data gathered during BO-based tuning will be 
useful for next steps (model calibration, neural 
network control policy + reinforcement learning)

Example from LCLS
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Future Work
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• Farther in the future:
- Drive and witness bunch optimization 
- PWFA optimization
• Reduction of beam jitter (synergy with E325 + E327)
• Can leverage virtual diagnostic from E327 as additional tuning output

- ML aided LPS shaping with the laser heater (synergy with E325 + E327)

• Next steps: 
- Simultaneous optimization of the beam spot at both IPs (adjusting 

sextupole movers and other variables in S20), optimization to 
reduce emittance growth

Can use trust region BO and then NN prior + BO

- Incorporate TCAVs in tuning for longitudinal phase space 
optimization 

- Use data gathered for comprehensive model-based approaches 
(calibrate global models, use neural network prior mean to speed up 
Bayesian optimization, extend to reinforcement learning)

Aim to use for fast switching between configurations and fine-tuning

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

RL is a complementary approach
 to model-based warm starts



Desired facility upgrades
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• Computing
- GPU integration into online compute resources with read and write 

permissions to machine (S3DF, controls network, or local compute)

- Working on getting links to S3DF with limited write access (with 
TID/EED)

- November ‘23 Jingchen and others will start looking into suitable GPUs 
for controls network

- Have a standalone GPU box à would like to get write access as a 
temporary measure in the interim (but has met with resistance)



Phase Space Reconstruction with Differentiable Tracking Simulations
Differentiable pipeline for reconstructing 6D phase space 
distribution using neural network parameterization

Reconstruct 4D phase space 
distribution + approx. energy 
spread from simple beamline 
diagnostic and 10 measurements

Simulation
Experiment

Confidence estimates

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space 
diagnostics in a way that is computationally-efficient and sample-efficient

Bmad-X

R. Roussel et al, PRL 2023

https://github.com/bmad-sim/Bmad-X
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001


Thanks to the team and collaborators!
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A. Edelen, C. Emma, R. Roussel, S. Miskovich, 
W. Neiswanger, G. White, S. Gessner, A. 
Scheinker, C. Mayes, D. Ratner, B. O’Shea, Z. 
Zhang, T. Boltz, J. P. Gonzalez-Aguilera, D. 
Kennedy and many others



Backups



Synergies between ML experiments 



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 
processing

Data 
processing

FACET-II LCLS

Data 
processing

Data 
processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 
combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



• Community development of re-
usable, reliable, flexible software 

tools for AI/ML workflows has been 
essential to maximize return on 

investment and ensure 
transferability between systems

  

•  Modularity has been key: 
separating different parts of the 

workflow + using shared standards

Modular, Open-Source 
Software Development

Different software for different tasks:
 

Optimization algorithm driver (e.g. Xopt)
 

Visual control room interface (e.g. Badger)
 

Simulation drivers (e.g. LUME)
 

Standards model descriptions, data formats, 
and software interfaces (e.g. openPMD)

 

Online model deployment (LUME-services)

Online Impact-T simulation and live 
display; trivial to get running on 

FACET-II using same software tools 
as the LCLS injector 

LCLS

FACET-II

standard
data 

format
LUME

More details at https://www.lume.science/ 

Simulation

Optimizer

Modular open-source software has been essential for our work.  We welcome new users and contributors.

https://www.lume.science/




Uncertainty Quantification / Robust Modeling / Model Adaptation

• Major area of AI/ML research: statistical distribution shift 
between training and test data degrades prediction

 

• Distribution shift is extremely common in accelerators, due to 
both deliberate changes in beam configuration and 

uncontrolled or hidden variables

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

unseen region

model input

co
un

ts

training set new conditions

model input

co
un

ts

  Example: beam size prediction and uncertainty estimates under drift from a neural network 
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for 

uncertainty 



Landscape of AI/ML Activities at FACET-II
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Synergistic experiments, individual success enhances all research + facility operation

E326 E327 E327 E325

E325 E331


