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E331 Science Motivation

Major limitations in the way accelerator tuning is done: 5]
* Piecemeal tuning of subsystems (known to be sub-optimal)
* Indirect use of high-dimensional diagnostics (e.g. images)
* Often a lack of accurate online models

- Potentially limiting factors in control of extreme beams

o within the window (MeV)
o

More global view can enable better control: P\

Source: Ji Qiang

linac optimization
with one optimal
injector solution

using global machine
optimization
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* Fully exploit unknown system-wide sensitivities + nonlinearities

* Faster switching between setups (if using global representation of

machine)

* Better handling of parameter tradeoffs (e.g. jitter, matching,
longitudinal phase space)

Comprehensive, system-wide control is likely to be a key factor in
improving custom control of extreme beams, but this is a difficult task
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Tuning approaches leverage different amounts of data / previous knowledge

- suitable under different circumstances

less <

Model-Free
Optimization

v/

Observe performance change after
setting adjustments

- estimate direction or apply
heuristics toward improvement

gradient descent
simplex
ES

assumed knowledge of machine

v

-
Model-guided
Optimization
J. Kirschner
Update a model at each step
- use model to help select the next
point
.

more

Bayesian optimization
reinforcement learning

Global Modeling +
Feed-forward Corrections

Make fast system model

- provide initial guess (i.e. warm
start) for settings or fast
compensation

ML system models +
inverse models

Model-based warm start

Tuning research aimed at combining the strengths of different approaches.

General strategy: start with sample-efficient methods that do well on new systems, then build up to more data-intensive and heavily model-

informed approaches.
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FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3 Sextupole tuning for IP at FACET-II
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https://github.com/ChristopherMayes/Xopt

Fast-Executing, Accurate System Models

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Bringing
simulation tools qun iR ook
from HPC systems el B - i i XTCAY o N
to online/local s TR e T e e : f
compute 3" 5

Linac sim in Bmad with collective beam effects ™=
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Experiment planning < ms execution speed

Model-based control

Edelen et al., NeurlPS 2019

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity

online prediction, tracking of machine behavior, and model-based control


https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

Oy

Warm starts for
optimization

A. Scheinker, A. Edelen,
etal, PRL, 2018
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online

Example: Warm Starts from Online Models

Solenoid
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* Round-to-flat beam transforms are challenging to optimize
—> 2019 study explored ability of a learned model to help

* Trained neural network model to predict fits to beam image,
based on archived data

* Tested online multi-objective optimization over model (3
guad settings) given present readings of other inputs

* Used as warm start for other optimizers

* Trained DDPG Reinforcement Learning agent and tested on
machine under different conditions than training
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Hand-tuning in seconds vs. tens of minutes

Boost in convergence speed for other algorithms



Deep Reinforcement Learning

e Control policy maps states to actions
new system state, reward

* Policy is learned over time based on performance
(quantified by the “reward”)

Neural Network _r ]

(control policy) S 1 Neural network enables use of diverse signal types

(e.g. scalars, images, time series)

* Often learns a system model simultaneously (map
states + actions to expected reward)

Gu, etal, 2016

Appeal for accelerator control:

* Suitable for large, nonlinear systems

* Exploit machine-wide sensitivities + directly use target beam
. . A . parameters or images
complicated diagnostic information

* Leverage information from past observations Control
o] [19)%

* Transfer between similar designs
present machine

" new machine
settings

settings Spectra
Gas detector
XTCAQ/

*  Well-established in other fields (e.g. robotic control)

. gun L1X
—> but accelerators have unique challenges

VCC L1Sl L2-linac L3-linac
BClsoMev BC243Gev  14Gev  undulator

Deep RL is well-suited to accelerator control, but dedicated R&D is needed to bring it to full fruition




E331 Science/Technical Goals

ML

Inverse

Suggested
initial
settings

LIS phase
BC2 peak current

Main goal: develop and demonstrate measured
methods to leverage global learned system ;
responses to aid fast, high-quality tuning
of beams under challenging conditions and
aid switching between setups

present
settings +

(build up incrementally to machine-wide I:‘t:::s
neural network-based reinforcement
learning)

XTCAV
X

BC243Gev  14Gev

()

Local A. Scheinker, A. Edelen,
optimizer etal, PRL, 2018

BCl550 Mev undulator

neural 7
network change in »
control settings

policy
cavity phases, amplitudes

solenoids, quadrupoles

. TCAV

Final Focus &
Experimental Area

SLAC Linac Tunnel (Sectors 10 — 19) W-Chicane

Science/Technical Goal Target Time Definition of Success

Evaluate methods for high-dimensional, high-quality 1-3 years
control over beams using learned responses, starting
with small-scale problems + single-bunch mode

High-quality control over extreme beams and plasma 3 years
experiments, two-bunch mode

Deliver algorithms and interfaces for regular operation continual

Automated tuning of transverse emittance and longitudinal
phase space: faster, higher-quality tuning than standard
methods, new capabilities in control

Same as above but for more challenging setups/target
beams

Tools incorporated into regular use + transitioned to
operations

Staged approach gradually increases complexity, goes from sample-efficient methods that learn on-the-fly to comprehensive model-based methods that

use variety of machine data = success determined by improvements in tuning quality and speed, and transition into operations



E331 Diagnostic and Observables

Y =TCAVs = bunch length pyros
vee = Edge radiation cameras
= SYAG
g RF Gun Similar
Q=2nC Lo diagnostic
11 BC11 . 12  BC14 13 BC20  Experimental Area needs to E327

E =135 MeV vV E=10GeV

.24 E =335 MeV E=45 GeV

* LPS diagnostics (e.g. injector + downstream TCAVs)

* Emittance measurements, x-y beam sizes from wires, transverse phase space from screens
* Upstream inputs: virtual cathode camera, QE map once available, laser diagnostics

* Readbacks from settings (gun solenoid, gun and linac phases/amplitudes etc)

* DAQ: ~150 scalar diagnostics (e.g. BPMs, toroids, RF readbacks, BLEN pyros) and multiple image diagnostics (SYAG, EOS, TCAV)

- Flexibility in E331 enables adaptation to installation / commissioning schedule for different diagnostics

Numerous diagnostics to inform tuning or be used as tuning targets



FY22-FY23 Progress - shift timeline

Shift Summary Date  Experiment Num

Tested software. Ran ND scan characterizing injector
11/17/21 E327 11/17/21 11:44 11/17/21 17:44 6 0 0 emittance vs sol,buck, cq,sq
Gathered training data for ML optimiization of injector
11/20/21 E327 11/19/21 20:12 11/20/21 12 0 0 emittance. Tested software.
11/29/21 E327 11/28/21 18:17 11/29/21 8 0 0 Test Bayes Exp for injector emittance
12/4/21 E331 12/3/21 12:00 12/4/21 0:00 12 0 0 Ran Bayes Exp on emittance + bmag
12/11/21 E331 12/10/21 20:25 12/11/21 12:25 16 0 0 Ran Bayes Exp on emittance + bmag
TCAV measurements scanning L2 phase data gathered.
12/17/21 E327 12/16/21 20:13 12/17/21 8:13 12 0 0 Inj opt data gathered with match TCAV
Compared opt methods for injector emittance + match
at new laser wavelength of 253nm with 266 nm prior
2/27/22 E331 2/27/22 11:59 2/27/22 23:59 12 0 0 data
Characterize emittance at 1.8 nC with Bayes Ex.
Optimize with BO + other methods and gather
5/14/22 E331 5/13/22 18:02 5/14/22 5:02 11 0 0 comparative data
Ran Bayesian Optimization on Sextupole movers.
Gathered TCAV, EOS and wire scanner data at different
8/22/22 E331 8/21/22 14:30 8/22/22 2:30 6 6 0 sextupole mover positions TCAV
Sum Total Hrs 95 6 0

e Shared beam time with E327
* Deployed initial software tools for measurements and optimization

* Characterized injector under different charge settings and laser parameters
* Tested new ML algorithms for efficient characterization and tuning (applied to injector emittance and IP spot size tuning)

* Next steps: continue scaling up + use data gathered to move toward more comprehensive model-based approaches;
incorporate TCAVs in tuning

First shifts demonstrated utility of ML optimization tools = data gathered will be used in next phases of project



E331 Progress: Practicalities and Infrastructure

* Vetted adaptive emittance measurement method s B
for use in automated emittance optimization @t‘ Xopt.step() jp—
(Py E m itta n Ce) Pass sample(s) to be evaluated 5 . .
https://github.com/slaclab/PyEmittance — =v—— . )
. . . - . ngerates sample . Ev'aluelnes . S
- Need to re-evaluate in new machine config, extend : géggzjg:;igles, e objective function 151 8 Mo .
to downstream emittance measurements constraints T g P —— -
B (kG
Retrieve result(s), handle errors, add data to generator, store results etc.
. . Adaptive quad scan emittance
* Integrated Xopt into FACET-Il control system = aids meas 5 reme‘z t deployed for robust
algorithm transfer between systems and will make it Xopt running on FACET-II for easy ML algorithm

. measurements
easy to test new algorithms on FACET-I| deployment on different tuning problems

* Deployed online LUME-IMPACT model of injector
(live reading from machine and making predictions)

- Particle-in-cell code includes space charge, uses
VCC image

- Same infrastructure for deploying online ML
models we plan to use in model-based tuning

FACET-II Injector model

) o running online using
* Next steps: Badger user interface for optimization LUME-IMPACT
(also saves tuning runs = useful data for developing https://www.lume.science/ Badger GUI: useful for online optimization
model-based algorithms) ' ' ' AND archiving of useful data

Variety of tools for online modeling and optimization. Optimization software useful for algorithm testing, deployment into ops, and

collection of useful data for more comprehensive model training.


https://github.com/slaclab/PyEmittance
https://www.lume.science/

E331 Progress: ML for Efficient Characterization

R. Roussel et. al.

Better Data Sampling: Nat. Comm. 2021

Bayesian Exploration
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E331 Progress: ML for Efficient Characterization

Setting changes on 10 variables (solenoid, bucking coil, corrector and matching quads)

Automatic Exploration ] v
(constrained to useful values | Y .
; 3 3 Xx-y emit,
of emittance and match) : match,
D : § g § § £ and
R £ 8 g - f . beam
o (s} 8 200
v T images
i

ik

=

- /\i g T
,_hcﬂ o

FACET-Il Injector

[ ML Models of Injector ]

* Used Bayesian Exploration for efficient high-dimensional characterization (10 transverse phase space

variables) of emittance and match at 700pC: 2 hrs for 10 variables compared
to 5 hrs for 4 variables with N-D parameter scan

* Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

Predicted Measured

* Example of integrated cycle between characterization, modeling, and . . .
optimization = now want to extend to larger system sections and new setups B N

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



E331 Progress: Bayesian Optimization and Characterization of Injector

* Demonstrations of Bayesian optimization on the injector with up to 10 variables

* Extensive data obtained from characterization studies at 2nC and 700pC

* ML models from data give insight into machine behavior = still exploring this extensively
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E331 Progress: Bayesian Optimization and Characterization of Injector

e Demonstratio
e Extensive da

* ML models Working on using measured data gathered from these experiments to
( make comprehensive injector model and do model calibration to find )
Bayi sources of error and better match machine
‘ L
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E331 Progress:
Efficient Emittance Optimization with Partial Measurements

* Instead of tuning on costly emittance measurements directly, learn a fast-executing model online for beam size while optimizing
» Demonstrated new algorithmic paradigm leveraging ”Bayesian Algorithm Execution” (BAX) for 20x speedup in tuning = learn on direct observables (e.g.
beam size); do inferred “measurements” (e.g. emittance) much more quickly on the model than would be possible on the machine

() (b) Iteration 10 2.25 T —~ §s
[ 1 ( Select virtual Sample b ) ! ~— BO Emittance 2 2.00- MR DAX Bmittance s0g B
elect virtual — ample beam 120 I = 4. — - F g
Update GP model —» injector config: size scans from . \‘ I /;\ 2.00 1 == Simplex Emittance qg NWM BAX Beam Size Error g r_g
| ) [SOL1, CQ1, SQ1] posterior g \ ,l < Min. of BAX Emittance 3 1.504 Mfoka F25 2.8
i ot o 1.751 = WAL £3
100 \ © VAR s i =
((d) ~ Iterate until optimal ng \ “ II " % 5 1.00 g 10 500 s 00 = E
Bin injector config (with lowest g AN JI ,I £ 1.501 Number of B Size Function Queri
Ql:g)l;ien'ln;se) (S enuttance) is found c§ 80 N v ’ Lg umber O: eam dOlze nction Yueries
L ) Ly (g 1.25 - simulation
A . e e
_ 3 Msssireies 60| X-Plane Convergence of beam size prediction error
(C) i Ny —— Model i é* A ‘4* B 5 & 1.00 T T T T T
5 / = = = 0 250 500 750 1000 1250 j ical indi imizati
RPN Compute F \ # Quadrupole Strength (kC) il B e e e o {Gncrien gives practical indicator of optimization
ermttance g N\ / . .
e e 3 B convergence (no need to do direct emittance
Esgc‘;gffc’gfﬁagl T model is learned measurement until the end)
SOL1, CQ1, SQ1, Q5 S . q
! QUL \ Optimization of emittance on model posterior ) on-the-fly | | [ Hand-Tuned Emittance 800
9
) —}— Observed Emittance
Iteratlon 90 ’—8? 8 — Upper Bound on Optimal | 600 © go\
Emitt H H
R Gun $-Band R Matching I g : it | 8% Found equivalent quality to hand-
. ccelerator 1re . 2 4 =} . . . . .
Gun  Solenoid oo, Quadrupoles = == Posterior Mean g 7 § = tuning in about 70 iterations (just a few
=e= Ground Truth — -400 @ . . . ..
A\ 100 g 61 : o E minutes with compu?at:ona/ly optimized
:/t[ e }{ b Jj't Q5 3 2. experiment BE routine)
= 54 3 O
v g 80 \‘ & Lt 2008 & |
! : sl N 7 4 -
: -
e % ;‘-le = p. a0 o oo https://arxiv.org/abs/2209.04587
(not drawn to scale) Lim =L Quadrupole Strength (kG) Number of Beam Size Function Queries

New method demonstrated at FACET-II has 20x speed improvement over standard emittance optimization method. Paradigm shift in

how tuning on indirectly computed beam measurements (such as emittance) is done.



https://arxiv.org/abs/2209.04587

E331 Progress: Optimization of Sextupoles for Spot Size at IP

160 1 — XIS

* Ran constrained Bayesian optimization on the yrms
sextupole movers (8 variables total) to minimize spot ] e
size as measured on the wires in S20

]
o

Beam Size (um)
(=]
o

* Recorded auxiliary data (TCAV and EOS, BSA)

3

* First step toward more comprehensive tuning in S20

0 5 10 15 20 25 30

Iteration
* Used software, Xopt, established for previous runs
with little need for adjustment to this specific acqulsition
problem = nice demonstration of extensibility . — ¢
prior mean
Next: data

« Want to use on both IPs (with multi-objective optimization) and use greater number of variables
« Use data to inform faster subsequent optimization

Automatically tuned for a small, round beam at the IP using sextupole movers. Ready for next steps in tuning both IPs and with

broader set of variables.



Next Steps: NN Prior

Combining neural networks with BO = important for scaling BO up to higher-dimensional tuning problems

Good first step from previous work: use neural network

acquisition
system model to provide a prior mean for a GP N
GP ’ System Mean and Standard Error of Best -Emittance*bmag per Iteration (50 Trials)

Used LCLS injector surrogate model for prototyping P — —_—
variables: solenoid, 2 corrector quads, 6 matching quads it B R

. . o . . . . £
objective: minimize emittance and matching parameter g ~1.0

%—1-2 prior mean from
Correla[lénibetwsen Model2 and Surrogate (Ground Truth) (10k samples) % 0 -g _14 models With d’fferentfidelity
£ B
é §_1A6 € tant (Default)
Even prior mean models with <% £ = _ e
> . . EE - £ s regular Bayesian — Ground Truth
substantial inaccuracies = g ¥ o optimization Model1
provide a boost in initial 21 s £ Padet
convergence 55 "é =151 — ;ur;otl_;zate (Ground Truth) 0 10 20 N 30 20 50
. . () -~ Mode iteration
- now testing on machine 5 201" Beta = 2.0
i P VR AT 0.460 0.465 0.470 0.475 0.480 0.485
and reflnlng approaCh 200 175 -150 -125 g s S0 <ds 00 SOL1:solenoid field scale (kG*m)

NeurlPS proceeding: https://arxiv.org/abs/2211.09028
Model 2

Want to apply this to with sextupole tuning, injector and linac tuning, etc at FACET-Il = would potentially help
significantly with high-dimensional tuning

Should work well in cases where machine response drifts but qualitative response is similar



Next Steps: LPS Tuning
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Demonstrated Bayesian optimization for LPS tuning
on LCLS for several variants of problem setup:

2 peak current settings, 6 phases and amplitudes
Target phase space, minimize energy spread and
bunch length

Want to test on FACET-II as first step toward
more comprehensive neural network based
control for LPS

Data gathered during BO-based tuning will be
useful for next steps (model calibration, neural
network control policy + reinforcement learning)
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Future Work

Next steps:

Aim to use for fast switching between configurations and fine-tuning

Simultaneous optimization of the beam spot at both IPs (adjusting
sextupole movers and other variables in S20), optimization to

reduce emittance growth
Can use trust region BO and then NN prior + BO

Incorporate TCAVs in tuning for longitudinal phase space
optimization

Use data gathered for comprehensive model-based approaches
(calibrate global models, use neural network prior mean to speed up

Bayesian optimization, extend to reinforcement learning)

Farther in the future:
Drive and witness bunch optimization

PWFA optimization

Reduction of beam jitter (synergy with E325 + E327)

Can leverage virtual diagnostic from E327 as additional tuning output
ML aided LPS shaping with the laser heater (synergy with E325 + E327)
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A. Scheinker, A. Edelen,
etal, PRL, 2018
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Desired facility upgrades

* Computing

GPU integration into online compute resources with read and write
permissions to machine (S3DF, controls network, or local compute)

Working on getting links to S3DF with limited write access (with
TID/EED)

November ‘23 Jingchen and others will start looking into suitable GPUs
for controls network

Have a standalone GPU box = would like to get write access as a
temporary measure in the interim (but has met with resistance)

22



Phase Space Reconstruction with Differentiable Tracking Simulations

Differentiable pipeline for reconstructing 6D phase space
distribution using neural network parameterization

Neural Network

Proposed Initial
Particle Distribution

Differentiable Beam Dynamics Simulation
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Gradient calculation

Simulated Screen Images

Parameterized Transform

Randomly Generated
Samples
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Reconstructed
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Reconstruct 4D phase space
distribution + approx. energy
spread from simple beamline
diagnostic and 10 measurements

R. Roussel et al, PRL 2023

Bmad-X

Camera
Quadrupole
L] 102
4/ = =
& 10091 o m oy tom —orim |
Screen — Opx (mrad) — gy, (mrad) — Opz (mrad)
(I) 5(I)0 1OIOO 15IOO 20|00 25IOO
iteration
Confidence estimates
k=-3.4m™2 k=-25m™2 k=-1.5m™2 k =-0.49 m—2 k=0.49m2 k=15m™2 k=2.5m™>2
7
-7
7
0
-7
. p 'A\ ‘4( N Vf\‘\ /ﬁ\ {1 //“\\\\\ 1 // —— N ~

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space

diagnostics in a way that is computationally-efficient and sample-efficient


https://github.com/bmad-sim/Bmad-X
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001

Thanks to the team and collaborators!

A. Edelen, C. Emma, R. Roussel, S. Miskovich,
W. Neiswanger, G. White, S. Gessner, A.
Scheinker, C. Mayes, D. Ratner, B. O'Shea, Z.
Zhang, T. Boltz, J. P. Gonzalez-Aguilera, D.
Kennedy and many others

Virtual n Siv
diagno tcs tFACETII

ML analysis of edge radiation \ ML-based ML enhanced THz d g t Adaptive energy spectrum-based
“ for emittance measurements | LPS predictions for bunch I ngth me phase space predictions

ML driven control

Model independent ML-assisted Model dependent
adaptive feedback ci t ols inforcement learning controls
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Synergies between ML experiments

-

Edge Radiation
Emittance Diagnostics
(E326)

e/
Non-destructive, single

shot continuous
monitoring of emittance

of high-current beams
[ g

Virtual TCAV Predictive
Diagnostics
(E327)

R
O )

Longitudinal phase
space diagnostics,
always on, and for

extremely short bunches
\© y S)

Machine Control and Understanding

.-
C Y

Diagnostics
(Need information to make decisions)

—_——

Adaptive Feedback
(E325)

N/

Stable, high-quality
beams through control of
unmodeled accelerator

behavior

.

Control
(How to make decisions)

—

Learned Control
(E331)

N/

Fast, high-quality control

of extreme beams by
exploiting learned

J\_

FACET-Il responses )

Synergistic experiments, individual success enhances all research




Goal: Full Integration of Al/ML Optimization, Data-Driven Modeling, and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,
combining algorithms efficiently)

. Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster

. 83 (e.g. SDF at SLAC,
Z7h 5 85
Y IS 3£ - - NERSC at LBNL)
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3 g—b - - - -
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Control
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System
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- Archives z
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CHI Models) b=

S 5 e Model and ML-Based g
= o 2 Changes in Accelerator Settings Optimization
n Online Control GUI | Je |

Making good progress toward this vision with open-source, modular software tools



Modular, Open-Source
Software Development

*  Community development of re-
usable, reliable, flexible software
tools for Al/ML workflows has been
essential to maximize return on
investment and ensure
transferability between systems

* Modularity has been key:
separating different parts of the
workflow + using shared standards

VOCS

Defines variables,

objectives and
constraints

Xopt.step()

Pass sample(s) to be evaluated

Generator
+ Generates sample
points

Evaluator
+ Evaluates
objective function

Retrieve result(s), handle errors, add data to generator, store results etc.

vocs:
name: TNK_test
variables:

x1: [0, 3.14159]
x2: [0, 3.14159]

objectives: {yl:
constraints:

algorithm:
name: bayesian_exploration
options:

MINIMIZE}

cl: [GREATER_THAN, @]
c2: ['LESS_THAN', 0.5]

n_initial_samples: 5
n_steps: 25
generator_options:

batch_size: 1

#sigma: [[0.01, 0.0],

use_gpu: False

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)
Visual control room interface (e.g. Badger)
Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

More details at https://www.lume.science/

/

Simulation

Impact

Optimizer
stan
da

ﬁ'ﬁb’ format

ASTRA
GPT
Bmad M
Genesis

SRW

:} gen_1.json X

root:
» variables:
generation: 1
» VOCS:
» error: [] 1241 items
» inputs: [] 1241 items
» outputs: [] 1241 items

dard

ta
Data Set

Online Impact-T simulation and live
display; trivial to get running on
FACET-Il using same software tools
as the LCLS injector

. We welcome new users and contributors.

Modular open-source software has been essential for our work


https://www.lume.science/

Example: Online Models and Bayesian Optimization in Operations

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-II injector commissioning

4 . L )
Readings from machine via EPICS — Hand over to ML-based optimization for fine tuning
injector settings, laser profile from VCC image

Xopt LCLS-Il Emittance Optimization 2022-12-04
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LCLS-II live sim: run on HPC and display in control room 0 43/1 00 Be:z:ign’t'tfzr!cetyet Obta'?e.d dfmng
Updates every 3-8 mins, space charge included, uses LUME-IMPACT Ye&x - : ~Injector commissioning
v vey 0.57 / 1.00 despite extensive previous hand-tuning
N Adjust settings / ranges with insight from predictions — /)

Physicists’ intuition aided by detailed online physics model = simple example of how a “virtual accelerator” can aid tuning

HPC enables fundamentally new capabilities in what can be realistically simulated online



Uncertainty Quantification / Robust Modeling / Model Adaptation

* Major area of Al/ML research: statistical distribution shift training set new conditions
between training and test data degrades prediction . .
* Distribution shift is extremely common in accelerators, due to S S
both deliberate changes in beam configuration and S 3
uncontrolled or hidden variables
model input model input

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for
uncertainty

175 Measured

Predicted (Ensemble Mean)
150

< LAY

unseen region

50

20000 40000 60000 80000 100000
Sample Number (increasing time)

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally
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Landscape of Al/ML Activities at FACET-II

Edge radiation diagnostic | THz diagnostic

Lineout of Intensity at Y = 0
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Virtual non-invasive
diagnostics at FACET-II

E326 E327 E325
[oML analysis of edge radiation ] ML-based ML enhanced THz diagnostics Adaptive energy spectrum-based
!\ for emittance measurements | LPS predictions for bunch length measurements phase space predictions

ML driven control

Model independent ML-assisted Model dependent
adaptive feedback controls reinforcement learning controls

Synergistic experiments, individual success enhances all research + facility operation




