

FACET-II User's Meeting October 18, 2023 Heat-pipe oven

e-bunch

 $\theta_{\rm pr}$;"O"

LENS

E-324: Optical visualization of beam-driven plasma wakefield accelerators

Project leaders: Rafal Zgadzaj & Mike Downer

Ph.D. students: Jason Brooks, Timothy Araujo

E-224 publications: Zgadzaj *et al.*, "Dissipation of electron-beam-driven plasma wakes," *Nature Commun.* 11, 4753 (2020). Khudyakov *et al.*, "Ion dynamics driven by strongly nonlinear plasma wake," *PPCF* 64, 045003 (2022).
 ² Chang *et al.*, "Faraday rotation study of plasma bubbles in GeV wakefield accelerators," *PoP* 28, 123105 (2021).
 ¹ Silva *et al.*, "Stable positron acceleration in thin, warm, hollow plasma channels," *PRL* 127, 104801 (2021)

E-324 Goal: observe, analyze, understand on-axis PWFA structures that were invisible to us in FACET-I,

where the small θ_{pr} and Δt (< 1.5 ns), and large λ_{pr} (1µm) prevented probe light from reaching them.

- 2024: µs, ms post-wake plasma recovery dynamics
- 2025: formation of warm, hollow plasma channels for e⁺ acceleration¹
- 2026: in-line visualization of PWFA accelerator structures²

NSF support: PHY-2308921, "Optical visualization of beam-driven plasma wakefield accelerators" (2023-26)

A recent DESY experiment reported ~60 ns plasma recovery time (lower limit)

D'Arcy et al. "Recovery time of a plasma-wakefield accelerator." Nature 603, 58 (2022).

FlashForward parameters:

- drive bunch: 1 GeV, 0.5 nC
- plasma: 1.75 x 10¹⁶ cm⁻³ Ar
- probe: secondary PWFA driver at 1 ns < $\Delta t \le 150$ ns + trailing witness bunch
- "recovery" measured after single shots only. No account of cumulative plasma heating.

FACET-II is uniquely positioned to resolve current orders-of-magnitude uncertainty in plasma recovery time

FACET-II parameters:

NATIONAL

.ABORATORY

- drive bunch: 10 GeV, 2 nC
- plasma: 1 x 10¹⁶ cm⁻³ Li
- E-324 optical probe at 1 ns < Δt < ms
- Two SLAC observations:
- a) 20 GeV, 2 nC e-bunches
 @ 10 Hz heated Li oven tens °C within minutes.
- **b)** "Hail Mary" E-224 result (Zgadaj, 2020):

Specific 2024 goals of E-324:

things we didn't/couldn't do in E-224

1) Widen probe parameter range:

• Δt_{pr} : 1 ns \rightarrow milliseconds (electronic delay)

- observe plasma recovery dynamics

- $\theta_{\rm pr}$: 8 \rightarrow 20 mrad
 - enabled by shorter FACET-II pipe
 - deeper optical penetration into plasma column
- $\lambda_{\rm pr}$: 1 \rightarrow 0.5 μ m
 - better spatial resolution
 - deeper penetration, observe two Δt 's simultaneously, reduce lost probe light

2) Widen plasma excitation conditions

• Drive bunch only \rightarrow drive + witness: observe reduced plasma heating due to witness acceleration

distance inside oven: 250 mm

- Beam-ionized \rightarrow laser pre-ionized plasma: enabled by 0.5 µm probe, issue in Nat. Comms reviews
- Single-bunch excitation \rightarrow 10 Hz excitation: observe cumulative heating

100 mm

2 mm

• color

(a)

2025: Thin, warm, hollow plasma channels SLAC for stable positron acceleration

T. Silva et al., "Stable positron acceleration in thin, warm, hollow plasma channels," Phys. Rev. Lett. 127, 103801 (2021)

Related work: Diedrichs, Phys. Rev. Accel. Beams 22, 081301 (2019) + many others

- 1) e⁻ bunch (3 nC, 10 GeV, 10µm³) or laser pulse generates nonlinear wake in $n_{\rm e} = 10^{16}$ cm⁻³ hydrogen plasma. Plasma e⁻ warm to 2 < kT_e < 9 keV, rendering them mobile.
- 2) Ponderomotive force of wake pulls some ions into axis, pushes others outward, forming 2 concentric hollow plasma channels.
- 3) Inner ($r \sim 10 \,\mu\text{m}$) hollow ion channel forms $\sim 1 \,\text{cm}$ behind driver. Attracts & traps warm plasma $e^- \rightarrow$ charges negatively \rightarrow focusing force.

simple crater

common

Tycho (earth moon)

central peak crater peak ring crater

Lowell (Mars)

generate NL wake filling outer channel

inject e⁺ into inner channel

E-324 is uniquely positioned to observe these ion channels

:(b)

plasma

<u>2026</u>: Faraday rotation to image plasma bubbles in low-n_e plasma

 $n_{\rm P} \approx 10^{17} \, {\rm cm}^{-3}$: ⁽¹⁾ Chang *et al.*, "Faraday rotation study of plasma bubbles in GeV wakefield accelerators," *Phys. Plasmas* 28, 123105 (2021)

 $n_{\rm e} > 10^{19} {\rm ~cm^{-3}}$: ⁽²⁾ Kaluza *et al.*, *Phys. Rev. Lett.* **105**, 115002 (2010); ⁽³⁾ Buck *et al.*, *Nat. Phys.* **7**, 453 (2011).

Texas Petawatt

At FACET-II, the drive bunch will magnetize the front end of the bubble.

Faraday "streaks" of magnetized plasma bubble walls

- 2024: We will extend the study of long term evolution dynamics of post-wake plasma to ms-time scales, to establish full recovery time for a range of parameters.
- 2025: We will visualize on-axis ion-wake and warm hollow channel structures at $\Delta t \sim 30$ ps, taking advantage of larger θ_{pr} , higher-resolution imaging, lower n_e than in FACET-I.
- 2026: We will visualize e-wake structure & propagation dynamics at Δt < 1 ps, using magneto-optic probe techniques developed at UT-Austin.

NSF support: PHY-2308921, "Optical visualization of beam-driven plasma wakefield accelerators" (2023-26)

Thank You for providing this unique facility!

