

E308: Underdense Plasma Lens status and future plans

FACET-II Users Meeting

Oct. 17, 2023

Michael Litos – University of Colorado Boulder

Contents

1) Overview of E308

2) Commissioning Progress

3) Plans for Next Run

The Importance of Strong Focusing

- Matching into plasma stages
 - Necessary to prevent chromatic emittance growth
 - Quadrupole magnets not strong enough
- Divergence control coming out of plasma stages
 - Prevent chromatic emittance growth in vacuum from high divergence
 - Match injected beams exiting plasma to magnets / undulators
- Collider final focus
 - Axisymmetric can reduce length
 - Ultra compact and strong can provide tightest focus
 - Serve as proxy for collider FF in strong focusing studies (Oide effect)
- Other
 - SFQED increase χ : nonlinear quantum param.
 - ICS increase brightness by reducing source size
 - HEDP increase energy density on target

Thin, Underdense, Passive Plasma Lens (TUPPL)

- Thin PWFA much shorter than one betatron period
- Underdense Nonlinear blowout regime
- Passive No reliance on externally driven current
- Plasma Lens Transverse focusing impulse with negligible energy change

University of Colorado Boulder

Attractive Features of TUPPL

• Extremely strong focusing

• Orders of magnitude beyond electromagnets and PMQs

Axisymmetric focusing

• Single lens can achieve symmetric focus in x & y

Ultra-compact

- Plasma lens itself: ~100 μm
- Gas jet & laser hardware: ~1 cm footprint along beam line

• Rapidly and easily tunable

- Strength scales with density \rightarrow gas pressure
- Strength scales with length \rightarrow laser energy / focus

• Self-aligning

• Central axis of blowout determined by electron beam

Thin Lens Focusing

Focal length depends on beam energy and plasma lens density & length:

$$f \equiv \frac{1}{KL} = \frac{1}{2\pi r_e} \frac{\gamma_b}{n_p L} \xrightarrow{\bullet \text{ Beam Energy}}{\bullet \text{ Plasma Density}}$$

Can easily determine waist location and waist CS parameters as a function of initial CS parameters:

$$\beta_{f}^{*} = \frac{1}{K^{2}L^{2}\beta_{0} + 2KL\alpha_{0} + \gamma_{0}}$$

$$z_{w}^{*} = \frac{KL\beta_{0} + \alpha_{0} - L\gamma_{0}}{K^{2}L^{2}\beta_{0} + 2KL\alpha_{0} + \gamma_{0}}$$
Doss et.al., Phys. Rev. Accel. Beams, **22**(11)111001 (2019)

TUPPL focusing strength is orders of magnitude stronger than magnets of equivalent phase advance (normalized length).

Quadruple Magnet

Adapted from Taylor, SLAC-PUB-5621 (1991)

Phase advance (normalized length): $\Delta \psi = \sqrt{KL} = 0.1$

Туре	K [m ⁻²]	L [mm]	f [cm]
Quadrupole Electro- magnet	0.3	180	1000
Permanent Magnetic Quadrupole	150	8.2	81
Underdense Plasma Lens at n _p =10 ¹⁷ cm ⁻³	88400	0.34	3.3

Not only are plasma lenses <u>stronger</u>, but they are <u>axisymmetric</u>, unlike quadrupole magnets.

FACET-II: Nominal Experimental Design

1) Overview of E308

2) Commissioning Progress

3) Plans for Next Run

FACET-II: Commissioning Setup

- Experimental chamber with moveable gas jet below the beamline; e-beam travels left to right
- 2 cm elongated nozzle
- Gas outflow is laser-ionized at focus of an axilens; laser propagating left to right

Not ideal conditions, but allowed us to commission basic equipment, diagnostics, experimental procedures, and analysis techniques.

FACET-II: Commissioning Datasets

- Used what was available at the time
- Didn't know until later what regimes we are operating in
- One dataset had potential (but unclear)

Experimental Conditions

Parameter	Available	Desired	
Gas Jet Backing Pressure	~ 1-100 psi	~ 0.1-10 psi	
Nozzle Shape	2 cm Slit	~5mm Round	
Laser Direction	Longitudinal	Transverse	
Number of e ⁻ Bunches	1	2	
Transverse Size of e ⁻ Beam	> 30 µm	< 5 μm	
e ⁻ Drive Beam Density	1.7 x 10 ¹⁶ cm ⁻³	5 x 10 ¹⁷ cm ⁻³	

Datasets

Backing Pressure	0 psi	1 psi	6 psi	24 psi	57.8 psi	115.8 psi
Approximate Density (cm ⁻³)	0	0.27 x 10 ¹⁶	1.6 x 10 ¹⁶	6.5 x 10 ¹⁶	15 x 10 ¹⁶	32 x 10 ¹⁶
Underdense Regime?		Yes(?)	No(?)	No	Nope	No Way
Plasma Lens Thickness?		Thick Lens	Very Thick Lenses – Short PWFA Stages			

FACET-II: Commissioning Raw Data

- Imaging spectrometer set to image plane 1m downstream of TUPPL for these images.
- Expect large divergence for strongly focused beam.
- Expect no energy change for true TUPPL.
- Evidence of divergence, but also energy modulation, even at TUPPL candidate density.

FACET-II: Commissioning Data Analysis

- Horizontal beam sizes vs object plane relative to gas jet.
- Beam size is rms from Gaussian fit to projected beam.
- Difficult to interpret, except to say that we likely weren't in the TUPPL regime for any dataset.
- Lessons learned; analysis road tested; better prepared for next attempt.

1) Overview of E308

2) Commissioning Progress

3) Future Plans

Plans for 2024 FACET-II Runs

- Phase 1: ionize with main laser
 - Prefer 2 mm round gas jet nozzle
 - Could use rotated slit nozzle (possible configuration?)
 - Use axilens with main laser
 - Start with measurement of divergence (alá E332)
 - Follow-up with measurement of waist
- Phase 2: ionize with probe beam
 - Prefer 2 mm round gas jet nozzle
 - Could use back-filled Picnic Basket (must avoid beam ionization)
 - Need ~10 mJ on target, compressed, good wavefront
 - Use telescope + spherical lens
 - Configuration already laid out; may benefit from tweaking
 - Compensate GDD with chirp; must be confirmed during access
 - Install reflective telescope to reduce B-integral

Long-Term Plans (2025 and beyond)

- Ultra-strong focusing (stronger than FF quads)
- Two-bunch TUPPL
- Matching into PWFA
- Divergence control of plasma injected beams
- Transverse gradient TUPPL studies
- Observe and study Oide effect

Collaborators and Credits

University of Colorado Boulder

Dr. Chris Doss now at LBNL (...future collaborator?

CU funded by the Department of Energy under grant number DE-SC0017906.

