E304 Plans for FY24 Gas-jet in Static fill (GiS) configuration

FACET-II User Meeting, OCT 17-19th, 2023

Chaojie Zhang on behalf of the E300 Collaboration

Oct 18, 2023

E304 experiment

 $\Lambda = 2I_b/I_A \ I_A \approx 17 \text{ kA}$ Example parameters: driver: $\Lambda = 4$, $\sigma_r = \sigma_z = \epsilon_n = 5.3 \ \mu m$

n _{ph} [cm ⁻³]	n _{p0} [cm ⁻³]	ramp [mm]	I [kA]	ε _n [nm]	B [A/m ² /rad ²]	E [MeV]	σ _E /E	Q [pC]
1.5x10 ¹⁸	10 18	1.3	14	80	4E+18	620	0.15%	140

Internal generation of low-emittance, high-brightness bunches using density downramp

Xinlu Xu et al., Phys. Rev. Accel. Beams (2017)

Experimental layout

Hardware readiness

Hardwares sent to SLAC •SST blade •2-cm nozzles

#1

#2

• A new plate with additional tapped holes •a 0.5" stage for moving the blade

Quasi3D simulation using a simulated 2-cm nozzle density profile

Time structured electron beam (without laser heater)

Start-to-end beamline simulation and PWFA experiments (2022 run) suggest timestructured bunches

 μm scale >50 kA current spike(s) + a longer but lower-current (<10 kA) structure • such bunches can self-ionize meter-scale H2 plasmas and excite nonlinear wakes

> the nominal bunch reproduces experimental results

An alternative configuration: Gas-jet in Static fill (GiS)

Step I: QPAD simulation of self-focusing of the driver

Beam ionization of H₂ and self-focusing

- 1.5 Torr static fill (n_e~5e16 cm⁻³)

Self-focused beam from the QPAD simulation

Low-density gas jet had been characterized using IPG

We need a low-density (~10¹⁷ cm⁻³) gas jet to make a density bump in the static fill gas • Difficult to characterize using interferometer (or wavefront sensor) • We have developed a new method to measure density down to 10¹⁵ cm⁻³ • It's based on ionization induced plasma grating (IPG)

Density profile from fluid simulations

- 1.5 Torr static fill (n_{e0}~5e16 cm⁻³)
- 5-mm dia. round nozzle
 - Backing pressure 10 psi
 - Mach number ~5
- Density downramp
 - Peak density @2 mm: 1.7e17 cm⁻³
 - Ramp length: 1 mm
 - Density ratio $n_{peak}/n_{e0} \sim 3.5$
- Density ratio is tunable by changing backing pressure

Step II: Downramp injection modeled using Osiris quasi-3D

Bunch parameters@z=10 mm:

- slice and normalized emittance: ~0.5 μm
- peak current: ~1 kA, total charge 83 pC

Step III: Acceleration of the injected bunch modeled using QPAD

- Reload the self-focused driver

Import the downramp injected bunch into the 2nd QPAD simulation

Final parameters of the electron bunch

Longitudinal phase space and current profile of the injected bunch

Slice beam parameters:

• ε_n : ~0.7 µm, σ_E/E : ~0.2%, I: ~1 kA

Distinguish the injected bunch from the decelerated driver electrons

The injected bunch has a much smaller emittance (0.7 μ m vs 20 μ m of the driver)

[]

Summary: E304 Gas-jet in Static fill (GiS) configuration

- ε_n : 0.7 µm, σ_E/E : 0.2%, I: ~1 kA

Collaborations

UCLA C. Joshi, K. Marsh, W. B. Mori, Y. Wu, Z. Nie

╘┎

loa

X. Xu, M. Hogan, FACET-II staff

Sebastien Corde's group

Mike Litos' group

Questions?

Thank you for your attention

