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Si~e  E300, Pump depleted, high-gradient, UCLA
high-efficiency, low-energy spread PWFA of trailing
bunch with emittance preservation
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By matching the trailing bunch to plasma profile we will show emittance preservation ofa 30-40 micron beam
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Typlcal Single Bunch current and Longitudinal Phase Profile

High peak current beams with time dependent structure
Large variation Generated by 0.5 % amplitude and 0.25% RF phase jitter:
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What new physics can we do with a ultra-high current single bunch that we could not before?
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Another goal added: Meter-scale beam-ionized hydrogen plasma
Litos Group is looking at laser ionized meter-scale dense H,* columns

Motivation: For collider application very high (10 KHz) rep. rates needed for achieving needed luminosity

Li plasmas are robust but have no diagnostic access and limited by 1 Hz (CW) and 10 Hz burst mode.

In the past we have explore self-ionized Ar plasma ( Nat. Comm) . but multiple ionization can inject dark current in the wakes.
3 mm3H, volume easily be replaced by flowing the gas at Mach 5 in <1 ms.

Drive beam in beam-ionized plasmas are self aligning to wake , reduces alignmemt issue to aligning the trailing bunch to wake

Possible to replenish the mm region of gas within <1 ms in a burst mode using chemical laser technology
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Why is it difficult to produce beam ionized hydrogen?

e lonization pathways of H, molecule
Example: Ionization by electron bunch P y 2
Dissociation takes time
N lonization threshold of Fragmentation dynamics
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Shot to shot jitter produces large variations in H,*
plasma profiles (QPAD simulations)

lon density 30-50 um
after the current spike
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Plasmas and wakes produced by nominal beam pro1C
in QPAD simulations at different gas pressures
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Experlmental results of beam spectrum after plasma

(remember that the beam current profile is expected to fluctuate giving a whole range of variation
of energy loss/gain of beam slices due to changes to plasma length and peak decelerating gradient)
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Direct and indirect evidence of near complete energy
depletion of some electrons
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Comparison between changes to beam spectrum with

H, pressure in simulations and experiment
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Cut-off observed in experimental spectrum due to limited field

of view of the screen

Clear evidence of energy gain up to 7-8 GeV, continuous spectrum
In all spectra the NPC is clearly seen as a peak at 10 GeV
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Total energy deposited by the beam into plasma (wake) and

energy transfer efficiency from beam to wake
(a)

co

Assume energy expended in ionizing the gas is
negligible

Assume energy emitted in visible and X-ray
radiation is negligible
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All the energy lost by the drive electron charge that (b)

05 1 15 2

follows the ionization front goes in forming the
wake

At the highest pressure of 2.1 torr a few percent of
the energy is extracted by the accelerating charge
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E300 : Second Year Plan Can FACET Il provide 2 Bunch Configuration?

Plasma Phys. Control. Fusion 60 (2018) 034001
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Final focus and IP

(for a 30um emittance we very unlikely will ionize He in the ramps)
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Figure 3.1: Final Focus at FACET II experimental area. Courtesy of Glenn White (SLAC).




Pre-ionized vs. beam-ionized plasma (realistic ramps)
no helium ramps: Get a net efficiency of > 30% w pump depletion

Final energy spectrum.
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E300 Plans for year 3: Beam matching and emittar
preservation (realistic ramps)

Beam size and emittance evolution:
beam-ionized plasma

pre-ionized plasma negligible emittance growth

negligible emittance growth
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Suppose we have only the single bunch set-up : Create a second bunch via downramp
injection into the wake
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Publications

1) Wakefield Generation in Hydrogen and Lithium Plasmas at FACET-II: Diagnostics and First Beam-
Plasma Interaction Results

* D. Storey et al submitted to Physical Review Accelerators and Beams

2) Generation of meter-scale hydrogen plasmas and efficient pump-limited wake field excitation using
10 GeV electron bunches

* C.Zhang et al, submitted to Plasma Physics and Controlled Fusion

3)Perspectives on Positron Arm of a Plasma-based Linear Collider: Accomplishments and Formidable

Challenges
Chandrashekhar Joshi, Warren B. Mori and Mark J. Hogan: Under preparation

4) Commissioning and first measurements of the initial X-ray and y -ray detectors at FACET-II
, P. San Miguel Claveria et. al, AAC 2022 Conference Proceedings IEEE (2023)
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